Search results

1 – 1 of 1
Article
Publication date: 18 July 2023

Piti Sukontasukkul, Buchit Maho, Sila Komkham, Satharat Pianfuengfoo, Hexin (Johnson) Zhang, Doo-Yeol Yoo, Weerachart Tangchirapat, Worathep Sae-Long, Suchart Limkatanyu and Prinya Chindaprasirt

This study aims to propose a technique that establishes a mathematical relationship between width and time, and utilizes a derivative method to determine the initial printable…

Abstract

Purpose

This study aims to propose a technique that establishes a mathematical relationship between width and time, and utilizes a derivative method to determine the initial printable time (tint) for mortar suitable for 3D printing. The study conducted experimental tests on the tint, layer strain, and the relationship between filament width and time. These tests involved plain mortar and mortar reinforced with micro-fibers at varying volume fractions. The tint was determined analytically using the derivative method.

Design/methodology/approach

This study introduces a technique to accurately determine the initial printable time (tint) and width/height of printed cement mortar. Precise tint determination is essential for ensuring proper filament printing timing and eliminating the need for trial and error.

Findings

Results show that the proposed technique accurately determines the tint, as evidenced by the resemblance between expected and actual initial widths. Fiber-reinforced mortar (FRM) has a smaller tint than plain mortar, which decreases with an increasing fiber content. Additionally, FRM displays smaller layer strains compared to plain mortar.

Research limitations/implications

Results show that the proposed technique accurately determines the tint, as evidenced by the resemblance between expected and actual initial widths. FRM exhibits smaller tint and displays smaller layer strains than plain mortar.

Originality/value

This study introduces a novel technique that uses a mathematical relationship to determine the tint and height of cement mortar printing.

Details

Rapid Prototyping Journal, vol. 29 no. 9
Type: Research Article
ISSN: 1355-2546

Keywords

1 – 1 of 1